\(\int \frac {(b d+2 c d x)^{13/2}}{(a+b x+c x^2)^{5/2}} \, dx\) [1395]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 299 \[ \int \frac {(b d+2 c d x)^{13/2}}{\left (a+b x+c x^2\right )^{5/2}} \, dx=-\frac {2 d (b d+2 c d x)^{11/2}}{3 \left (a+b x+c x^2\right )^{3/2}}-\frac {44 c d^3 (b d+2 c d x)^{7/2}}{3 \sqrt {a+b x+c x^2}}+\frac {1232}{15} c^2 d^5 (b d+2 c d x)^{3/2} \sqrt {a+b x+c x^2}+\frac {616 c \left (b^2-4 a c\right )^{7/4} d^{13/2} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\arcsin \left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{5 \sqrt {a+b x+c x^2}}-\frac {616 c \left (b^2-4 a c\right )^{7/4} d^{13/2} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right ),-1\right )}{5 \sqrt {a+b x+c x^2}} \]

[Out]

-2/3*d*(2*c*d*x+b*d)^(11/2)/(c*x^2+b*x+a)^(3/2)-44/3*c*d^3*(2*c*d*x+b*d)^(7/2)/(c*x^2+b*x+a)^(1/2)+1232/15*c^2
*d^5*(2*c*d*x+b*d)^(3/2)*(c*x^2+b*x+a)^(1/2)+616/5*c*(-4*a*c+b^2)^(7/4)*d^(13/2)*EllipticE((2*c*d*x+b*d)^(1/2)
/(-4*a*c+b^2)^(1/4)/d^(1/2),I)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/2)/(c*x^2+b*x+a)^(1/2)-616/5*c*(-4*a*c+b^2)^
(7/4)*d^(13/2)*EllipticF((2*c*d*x+b*d)^(1/2)/(-4*a*c+b^2)^(1/4)/d^(1/2),I)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/
2)/(c*x^2+b*x+a)^(1/2)

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 299, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {700, 706, 705, 704, 313, 227, 1213, 435} \[ \int \frac {(b d+2 c d x)^{13/2}}{\left (a+b x+c x^2\right )^{5/2}} \, dx=-\frac {616 c d^{13/2} \left (b^2-4 a c\right )^{7/4} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right ),-1\right )}{5 \sqrt {a+b x+c x^2}}+\frac {616 c d^{13/2} \left (b^2-4 a c\right )^{7/4} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\arcsin \left (\frac {\sqrt {b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{5 \sqrt {a+b x+c x^2}}+\frac {1232}{15} c^2 d^5 \sqrt {a+b x+c x^2} (b d+2 c d x)^{3/2}-\frac {44 c d^3 (b d+2 c d x)^{7/2}}{3 \sqrt {a+b x+c x^2}}-\frac {2 d (b d+2 c d x)^{11/2}}{3 \left (a+b x+c x^2\right )^{3/2}} \]

[In]

Int[(b*d + 2*c*d*x)^(13/2)/(a + b*x + c*x^2)^(5/2),x]

[Out]

(-2*d*(b*d + 2*c*d*x)^(11/2))/(3*(a + b*x + c*x^2)^(3/2)) - (44*c*d^3*(b*d + 2*c*d*x)^(7/2))/(3*Sqrt[a + b*x +
 c*x^2]) + (1232*c^2*d^5*(b*d + 2*c*d*x)^(3/2)*Sqrt[a + b*x + c*x^2])/15 + (616*c*(b^2 - 4*a*c)^(7/4)*d^(13/2)
*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d
])], -1])/(5*Sqrt[a + b*x + c*x^2]) - (616*c*(b^2 - 4*a*c)^(7/4)*d^(13/2)*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 -
4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(5*Sqrt[a + b*x + c*x^2])

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 313

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-b/a, 2]}, Dist[-q^(-1), Int[1/Sqrt[a + b*x^4]
, x], x] + Dist[1/q, Int[(1 + q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 700

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d*(d + e*x)^(m - 1)*(
(a + b*x + c*x^2)^(p + 1)/(b*(p + 1))), x] - Dist[d*e*((m - 1)/(b*(p + 1))), Int[(d + e*x)^(m - 2)*(a + b*x +
c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2
*p + 3, 0] && LtQ[p, -1] && GtQ[m, 1] && IntegerQ[2*p]

Rule 704

Int[Sqrt[(d_) + (e_.)*(x_)]/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(4/e)*Sqrt[-c/(b^2 - 4*
a*c)], Subst[Int[x^2/Sqrt[Simp[1 - b^2*(x^4/(d^2*(b^2 - 4*a*c))), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 705

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[(-c)*((a + b*x +
c*x^2)/(b^2 - 4*a*c))]/Sqrt[a + b*x + c*x^2], Int[(d + e*x)^m/Sqrt[(-a)*(c/(b^2 - 4*a*c)) - b*c*(x/(b^2 - 4*a*
c)) - c^2*(x^2/(b^2 - 4*a*c))], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
 0] && EqQ[m^2, 1/4]

Rule 706

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[2*d*(d + e*x)^(m - 1
)*((a + b*x + c*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] + Dist[d^2*(m - 1)*((b^2 - 4*a*c)/(b^2*(m + 2*p + 1))), In
t[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[
2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && (IntegerQ[2*p] || (IntegerQ[m] &
& RationalQ[p]) || OddQ[m])

Rule 1213

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[d/Sqrt[a], Int[Sqrt[1 + e*(x^2/d)]/Sqrt
[1 - e*(x^2/d)], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 d (b d+2 c d x)^{11/2}}{3 \left (a+b x+c x^2\right )^{3/2}}+\frac {1}{3} \left (22 c d^2\right ) \int \frac {(b d+2 c d x)^{9/2}}{\left (a+b x+c x^2\right )^{3/2}} \, dx \\ & = -\frac {2 d (b d+2 c d x)^{11/2}}{3 \left (a+b x+c x^2\right )^{3/2}}-\frac {44 c d^3 (b d+2 c d x)^{7/2}}{3 \sqrt {a+b x+c x^2}}+\frac {1}{3} \left (308 c^2 d^4\right ) \int \frac {(b d+2 c d x)^{5/2}}{\sqrt {a+b x+c x^2}} \, dx \\ & = -\frac {2 d (b d+2 c d x)^{11/2}}{3 \left (a+b x+c x^2\right )^{3/2}}-\frac {44 c d^3 (b d+2 c d x)^{7/2}}{3 \sqrt {a+b x+c x^2}}+\frac {1232}{15} c^2 d^5 (b d+2 c d x)^{3/2} \sqrt {a+b x+c x^2}+\frac {1}{5} \left (308 c^2 \left (b^2-4 a c\right ) d^6\right ) \int \frac {\sqrt {b d+2 c d x}}{\sqrt {a+b x+c x^2}} \, dx \\ & = -\frac {2 d (b d+2 c d x)^{11/2}}{3 \left (a+b x+c x^2\right )^{3/2}}-\frac {44 c d^3 (b d+2 c d x)^{7/2}}{3 \sqrt {a+b x+c x^2}}+\frac {1232}{15} c^2 d^5 (b d+2 c d x)^{3/2} \sqrt {a+b x+c x^2}+\frac {\left (308 c^2 \left (b^2-4 a c\right ) d^6 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \int \frac {\sqrt {b d+2 c d x}}{\sqrt {-\frac {a c}{b^2-4 a c}-\frac {b c x}{b^2-4 a c}-\frac {c^2 x^2}{b^2-4 a c}}} \, dx}{5 \sqrt {a+b x+c x^2}} \\ & = -\frac {2 d (b d+2 c d x)^{11/2}}{3 \left (a+b x+c x^2\right )^{3/2}}-\frac {44 c d^3 (b d+2 c d x)^{7/2}}{3 \sqrt {a+b x+c x^2}}+\frac {1232}{15} c^2 d^5 (b d+2 c d x)^{3/2} \sqrt {a+b x+c x^2}+\frac {\left (616 c \left (b^2-4 a c\right ) d^5 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {1-\frac {x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{5 \sqrt {a+b x+c x^2}} \\ & = -\frac {2 d (b d+2 c d x)^{11/2}}{3 \left (a+b x+c x^2\right )^{3/2}}-\frac {44 c d^3 (b d+2 c d x)^{7/2}}{3 \sqrt {a+b x+c x^2}}+\frac {1232}{15} c^2 d^5 (b d+2 c d x)^{3/2} \sqrt {a+b x+c x^2}-\frac {\left (616 c \left (b^2-4 a c\right )^{3/2} d^6 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{5 \sqrt {a+b x+c x^2}}+\frac {\left (616 c \left (b^2-4 a c\right )^{3/2} d^6 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1+\frac {x^2}{\sqrt {b^2-4 a c} d}}{\sqrt {1-\frac {x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{5 \sqrt {a+b x+c x^2}} \\ & = -\frac {2 d (b d+2 c d x)^{11/2}}{3 \left (a+b x+c x^2\right )^{3/2}}-\frac {44 c d^3 (b d+2 c d x)^{7/2}}{3 \sqrt {a+b x+c x^2}}+\frac {1232}{15} c^2 d^5 (b d+2 c d x)^{3/2} \sqrt {a+b x+c x^2}-\frac {616 c \left (b^2-4 a c\right )^{7/4} d^{13/2} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{5 \sqrt {a+b x+c x^2}}+\frac {\left (616 c \left (b^2-4 a c\right )^{3/2} d^6 \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {x^2}{\sqrt {b^2-4 a c} d}}}{\sqrt {1-\frac {x^2}{\sqrt {b^2-4 a c} d}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{5 \sqrt {a+b x+c x^2}} \\ & = -\frac {2 d (b d+2 c d x)^{11/2}}{3 \left (a+b x+c x^2\right )^{3/2}}-\frac {44 c d^3 (b d+2 c d x)^{7/2}}{3 \sqrt {a+b x+c x^2}}+\frac {1232}{15} c^2 d^5 (b d+2 c d x)^{3/2} \sqrt {a+b x+c x^2}+\frac {616 c \left (b^2-4 a c\right )^{7/4} d^{13/2} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\sin ^{-1}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{5 \sqrt {a+b x+c x^2}}-\frac {616 c \left (b^2-4 a c\right )^{7/4} d^{13/2} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{5 \sqrt {a+b x+c x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.15 (sec) , antiderivative size = 180, normalized size of antiderivative = 0.60 \[ \int \frac {(b d+2 c d x)^{13/2}}{\left (a+b x+c x^2\right )^{5/2}} \, dx=\frac {4 d^5 (d (b+2 c x))^{3/2} \left (-41 b^4+156 b^3 c x+48 b c^2 x \left (-11 a+2 c x^2\right )+4 b^2 c \left (121 a+51 c x^2\right )+16 c^2 \left (-77 a^2-33 a c x^2+3 c^2 x^4\right )-616 c \left (b^2-4 a c\right ) (a+x (b+c x)) \sqrt {\frac {c (a+x (b+c x))}{-b^2+4 a c}} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {5}{2},\frac {7}{4},\frac {(b+2 c x)^2}{b^2-4 a c}\right )\right )}{15 (a+x (b+c x))^{3/2}} \]

[In]

Integrate[(b*d + 2*c*d*x)^(13/2)/(a + b*x + c*x^2)^(5/2),x]

[Out]

(4*d^5*(d*(b + 2*c*x))^(3/2)*(-41*b^4 + 156*b^3*c*x + 48*b*c^2*x*(-11*a + 2*c*x^2) + 4*b^2*c*(121*a + 51*c*x^2
) + 16*c^2*(-77*a^2 - 33*a*c*x^2 + 3*c^2*x^4) - 616*c*(b^2 - 4*a*c)*(a + x*(b + c*x))*Sqrt[(c*(a + x*(b + c*x)
))/(-b^2 + 4*a*c)]*Hypergeometric2F1[3/4, 5/2, 7/4, (b + 2*c*x)^2/(b^2 - 4*a*c)]))/(15*(a + x*(b + c*x))^(3/2)
)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1327\) vs. \(2(249)=498\).

Time = 10.27 (sec) , antiderivative size = 1328, normalized size of antiderivative = 4.44

method result size
default \(\text {Expression too large to display}\) \(1328\)
elliptic \(\text {Expression too large to display}\) \(1360\)
risch \(\text {Expression too large to display}\) \(3986\)

[In]

int((2*c*d*x+b*d)^(13/2)/(c*x^2+b*x+a)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/15*(d*(2*c*x+b))^(1/2)*(7392*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^
2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^
(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a^2*c^4*x^2-3696*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^
(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*El
lipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a*b^2*c^3*x^2+462*((b+2*c
*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)
^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2
),2^(1/2))*b^4*c^2*x^2-384*c^6*x^6+7392*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-
4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a
*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a^2*b*c^3*x-3696*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a
*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^
(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a*b^3*c^2*x+462*(
(b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*
c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*
2^(1/2),2^(1/2))*b^5*c*x-1152*b*c^5*x^5+7392*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+
b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+
(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a^3*c^3-3696*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*
a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))
^(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a^2*b^2*c^2+462*
((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a
*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)
*2^(1/2),2^(1/2))*a*b^4*c-3168*a*c^5*x^4-648*b^2*c^4*x^4-6336*a*b*c^4*x^3+624*x^3*b^3*c^3-2464*a^2*c^4*x^2-352
0*a*b^2*c^3*x^2+674*x^2*b^4*c^2-2464*a^2*b*c^3*x-352*x*a*b^3*c^2+170*x*b^5*c-616*a^2*b^2*c^2+110*a*b^4*c+5*b^6
)*d^6/(2*c*x+b)/(c*x^2+b*x+a)^(3/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.15 (sec) , antiderivative size = 362, normalized size of antiderivative = 1.21 \[ \int \frac {(b d+2 c d x)^{13/2}}{\left (a+b x+c x^2\right )^{5/2}} \, dx=-\frac {2 \, {\left (924 \, \sqrt {2} {\left ({\left (b^{2} c^{3} - 4 \, a c^{4}\right )} d^{6} x^{4} + 2 \, {\left (b^{3} c^{2} - 4 \, a b c^{3}\right )} d^{6} x^{3} + {\left (b^{4} c - 2 \, a b^{2} c^{2} - 8 \, a^{2} c^{3}\right )} d^{6} x^{2} + 2 \, {\left (a b^{3} c - 4 \, a^{2} b c^{2}\right )} d^{6} x + {\left (a^{2} b^{2} c - 4 \, a^{3} c^{2}\right )} d^{6}\right )} \sqrt {c^{2} d} {\rm weierstrassZeta}\left (\frac {b^{2} - 4 \, a c}{c^{2}}, 0, {\rm weierstrassPInverse}\left (\frac {b^{2} - 4 \, a c}{c^{2}}, 0, \frac {2 \, c x + b}{2 \, c}\right )\right ) - {\left (192 \, c^{5} d^{6} x^{5} + 480 \, b c^{4} d^{6} x^{4} + 12 \, {\left (7 \, b^{2} c^{3} + 132 \, a c^{4}\right )} d^{6} x^{3} - 6 \, {\left (59 \, b^{3} c^{2} - 396 \, a b c^{3}\right )} d^{6} x^{2} - 4 \, {\left (40 \, b^{4} c - 143 \, a b^{2} c^{2} - 308 \, a^{2} c^{3}\right )} d^{6} x - {\left (5 \, b^{5} + 110 \, a b^{3} c - 616 \, a^{2} b c^{2}\right )} d^{6}\right )} \sqrt {2 \, c d x + b d} \sqrt {c x^{2} + b x + a}\right )}}{15 \, {\left (c^{2} x^{4} + 2 \, b c x^{3} + 2 \, a b x + {\left (b^{2} + 2 \, a c\right )} x^{2} + a^{2}\right )}} \]

[In]

integrate((2*c*d*x+b*d)^(13/2)/(c*x^2+b*x+a)^(5/2),x, algorithm="fricas")

[Out]

-2/15*(924*sqrt(2)*((b^2*c^3 - 4*a*c^4)*d^6*x^4 + 2*(b^3*c^2 - 4*a*b*c^3)*d^6*x^3 + (b^4*c - 2*a*b^2*c^2 - 8*a
^2*c^3)*d^6*x^2 + 2*(a*b^3*c - 4*a^2*b*c^2)*d^6*x + (a^2*b^2*c - 4*a^3*c^2)*d^6)*sqrt(c^2*d)*weierstrassZeta((
b^2 - 4*a*c)/c^2, 0, weierstrassPInverse((b^2 - 4*a*c)/c^2, 0, 1/2*(2*c*x + b)/c)) - (192*c^5*d^6*x^5 + 480*b*
c^4*d^6*x^4 + 12*(7*b^2*c^3 + 132*a*c^4)*d^6*x^3 - 6*(59*b^3*c^2 - 396*a*b*c^3)*d^6*x^2 - 4*(40*b^4*c - 143*a*
b^2*c^2 - 308*a^2*c^3)*d^6*x - (5*b^5 + 110*a*b^3*c - 616*a^2*b*c^2)*d^6)*sqrt(2*c*d*x + b*d)*sqrt(c*x^2 + b*x
 + a))/(c^2*x^4 + 2*b*c*x^3 + 2*a*b*x + (b^2 + 2*a*c)*x^2 + a^2)

Sympy [F(-1)]

Timed out. \[ \int \frac {(b d+2 c d x)^{13/2}}{\left (a+b x+c x^2\right )^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((2*c*d*x+b*d)**(13/2)/(c*x**2+b*x+a)**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(b d+2 c d x)^{13/2}}{\left (a+b x+c x^2\right )^{5/2}} \, dx=\int { \frac {{\left (2 \, c d x + b d\right )}^{\frac {13}{2}}}{{\left (c x^{2} + b x + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((2*c*d*x+b*d)^(13/2)/(c*x^2+b*x+a)^(5/2),x, algorithm="maxima")

[Out]

integrate((2*c*d*x + b*d)^(13/2)/(c*x^2 + b*x + a)^(5/2), x)

Giac [F]

\[ \int \frac {(b d+2 c d x)^{13/2}}{\left (a+b x+c x^2\right )^{5/2}} \, dx=\int { \frac {{\left (2 \, c d x + b d\right )}^{\frac {13}{2}}}{{\left (c x^{2} + b x + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((2*c*d*x+b*d)^(13/2)/(c*x^2+b*x+a)^(5/2),x, algorithm="giac")

[Out]

integrate((2*c*d*x + b*d)^(13/2)/(c*x^2 + b*x + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(b d+2 c d x)^{13/2}}{\left (a+b x+c x^2\right )^{5/2}} \, dx=\int \frac {{\left (b\,d+2\,c\,d\,x\right )}^{13/2}}{{\left (c\,x^2+b\,x+a\right )}^{5/2}} \,d x \]

[In]

int((b*d + 2*c*d*x)^(13/2)/(a + b*x + c*x^2)^(5/2),x)

[Out]

int((b*d + 2*c*d*x)^(13/2)/(a + b*x + c*x^2)^(5/2), x)